
Approximate Boolean Operations on Free-form Solids

Henning Biermann Daniel Kristjansson Denis Zorin
NYU Media Research Laboratory∗

Abstract

In this paper we describe a method for computing approximate
results of boolean operations (union, intersection, difference) ap-
plied to free-form solids bounded by multiresolution subdivision
surfaces.

We present algorithms for generating a control mesh for a mul-
tiresolution surface approximating the result, optimizing the param-
eterization of the new surface with respect to the original surfaces,
and fitting the new surface to the geometry of the original surfaces.
Our algorithms aim to minimize the size and optimize the quality
of the new control mesh. The original control meshes are modified
only in a neighborhood of the intersection.

While the main goal is to obtain approximate results, high-
accuracy approximations are also possible at additional computa-
tional expense, if the topology of the intersection curve is resolved
correctly.

CR Categories and Subject Descriptors: G.1.2 [Approximation]: Approximation
of surfaces and contours. I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling: Boundary representations, Constructive solid geometry (CSG),
Curve, surface, solid and object representations.

Additional Keywords: Subdivision surfaces, Multiresolution surfaces, Geometric
modeling.

1 Introduction

Boolean operations are a natural way of constructing complex solid
objects out of simpler primitives. This approach is very common
in computer-aided geometric design, as many artificial objects can
be constructed out of simple parts, such as cylinders, rectangular
blocks, and spheres.

Few computational representations of solids are closed with re-
spect to boolean operations. This means that the result of a boolean
operation cannot be represented precisely in most cases. One way
to avoid this problem is to use a tree of boolean operations as the
object representation and implement various algorithms directly on
such representation. This approach is referred to as constructive
solid geometry (CSG) [14]. However, for many applications CSG
is not the most efficient or appropriate. Most commonly, boundary
representations (B-Reps) of solids are used and boolean operations
have to be implemented in B-Rep framework. Such an implemen-
tation is quite difficult for higher-order B-Reps as it requires inter-

∗{biermann,danielk,dzorin}@mrl.nyu.edu

secting parametric surfaces, separating them into pieces and con-
structing new surfaces out of these pieces.

Existing systems typically treat a B-Rep as a collection of
trimmed spline patches, sharing the boundaries. The boundaries
of individual patches are often matched only approximately, as it is
difficult to ensure that two trimming curves in different parametric
domains are identical in space. Each intersection operation leads
to increasingly complex and difficult to handle trimming curves. It
is difficult to apply smooth deformations to the resulting models,
since special care must be taken to avoid cracks, etc. An elemen-
tary operation required for this surface representation is to intersect
two trimmed NURBS patches, which is a difficult problem by it-
self. As a result, boolean operations are often slow and not fully
robust, although excellent results are achieved by some solid mod-
eling cores.

Figure 1: “Venus with drawers” (after S. Dalı́) is created using
union, intersection and difference operations.

For many computer graphics and animation applications such
high-precision and complex techniques are not essential. The most
difficult cases such as the case of two identical, but slightly rotated
intersecting objects are often of little relevance. At the same time,
keeping the calculations efficient and robust is important, as well as
ensuring the complexity of the model is manageable.

In this paper, we present a new approach to computing the result
of boolean operations on B-Rep solids. We represent the bound-
ary surfaces as piecewise-smooth subdivision surfaces, described
in greater detail in Section 2. For brevity, we are going to call such
solids free-form solids. The advantage of this representation is its
simplicity: the surface is defined by a control mesh with tagged
creases and corners, as well as sets of details added at finer levels.
Continuity and smoothness of the surface are guaranteed automati-
cally. Representations of this type are increasingly popular, as they
considerably simplify modeling complex free-form objects.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

While the problem we are solving is similar to the traditional
CAGD problem, our work is primarily motivated by requirements
of applications in computer animation and conceptual design. We
aim at fast and robust approximate calculations; it should be pos-
sible to mix boolean operations with free-form deformations and
other types of surface manipulation.

These goals radically change the set of problems that we need
to solve: surface-surface intersection, usually regarded as the cen-
tral part of an implementation of boolean operations, becomes sec-
ondary. In particular, we relax the requirement that the topology of
the intersection curve is computed precisely. Our primary emphasis
is on algorithms for construction of the approximating multiresolu-
tion surface for the result. Rather than adjusting our representation
to the needs of boolean operations, e.g. by introducing trimming
curves, we develop algorithms that allow us to keep the representa-
tion of the results simple.

Our main contributions include:

• an algorithm for constructing a coarse control mesh for the result
of a boolean operation;
• algorithms for defining and optimizing a parameterization of one
multiresolution subdivision surface (result) over another (one of the
original surfaces).
• a hierarchical fitting procedure for a surface parameterized over
another surface.

1.1 Previous Work

Our work is most closely related to, and was done in parallel with,
the work of Litke et al. [23] on trimming subdivision surfaces. A
few similar issues have to be addressed in both cases. In particular,
the connectivity of the control mesh for the trimmed subdivision
surface has to be changed, and the new surface needs to be param-
eterized over the original. However, for trimming there is no need
to merge the control meshes of two separate surfaces, and in our
case there is no need to use a special combined subdivision scheme
[20] for representing the intersection curve. [23] does not optimize
parameterizations and surface fitting issues are resolved differently.

Linsen [22] has developed a technique for blending of subdivi-
sion surfaces. While [22] presents a construction of a combined
control mesh for a blend of two subdivision surfaces, the issues of
matching the geometry of the intersection curve and approximation
of the result of boolean operations are not considered.

Multiresolution subdivision surfaces were introduced in [24, 26,
35]; we use piecewise smooth subdivision rules of [4] to be able
to represent sharp features on multiresolution surfaces. Fitting of
subdivision surfaces is discussed in [13, 15].

Our work can be contrasted with the work of Rappoport et al.
[27] and earlier work of Goldfeather et al. [11] and Rossignac [8] on
efficient rendering CSG objects. While boolean operations on CSG
objects are straightforward, substantial effort is required to render
them and interactive rendering is possible only for simple objects.
On the other hand, it is much more difficult to implement boolean
operations on multiresolution surfaces, but interactive rendering is
straightforward for surfaces of substantial complexity.

Extensive literature exists on solid modeling with B-Reps (sur-
veys can be found in [1, 28]). The emphasis there is on accuracy
and correct and consistent handling of degenerate cases, issues that
we avoid by replacing the requirement of topological correctness of
the result with the weaker requirement of topological consistency.

To compute approximate intersection curves we use perturbation
techniques of [30].

The part of our work on parameterization optimization builds
on the techniques used in mesh optimization community [9, 10].
Different methods to solve similar problems were proposed in [25]
and [19].

1.2 Overview of the algorithm

We apply a boolean operation (intersection, difference or union)
to two free-form solids bounded by parametric surfaces (Figure 2).
The details of our surface representation are discussed in Section 2.
We assume that each bounding surface is an orientable closed sur-
face embedded in R3. A surfaceM of this type separates the space
into a bounded and an unbounded connected volume. The free-form
solid defined byM is the bounded volume.

The main steps of our procedure are illustrated in Figure 3.

A B

AÇB A-B B-A AÇB

Figure 2: Elementary boolean operations on simple subdivision sur-
faces.

Step 1. Compute an approximate intersection curve, finding its im-
ages in each of the two parametric domains of the original surfaces.

Step 2. Construct the connectivity of the control mesh for the result,
and an initial parameterization of parts of the resulting surface over
the domains of the original surfaces.

Step 3. Optimize the parameterization of the result over the original
domains.

Step 4. Determine geometric positions for the control points of the
result using hierarchical fitting.

Figure 3: Left to right: Two separate surfaces intersected. Images
of the intersection curve in the parametric domains. Parametric do-
mains after cutting. Parametric domain for the result after optimiza-
tion. Final result after fitting.

Notation. All quantities with index 1 refer to the first solid, and
all quantities with index 2 refer to the second solid. The parametric
domains of the surfaces of the solids are denoted M1 andM2, the
maps defining the surfaces are fi : Mi → R3 (Figure 4). Greek
letters are reserved for arbitrary points in the parametric domains;
e.g. α = (u, v, w, i) where i is the triangle index and (u, v, w) are
the barycentric coordinates, u+ v + w = 1.

Mi domains for original surfaces
fi :Mi → R3 evaluation maps for the original surfaces
c(t) : I → R3 spatial intersection curve
ci(t) : I →Mi images of the intersection curve in the do-

mains of original surfaces
M ′

i parts of the domainsMi to be combined into
a new domain

p′i : M ′
i →Mi parameterization of M ′

i over the domain of
the original surfaceMi

c′i(t) : I →M ′
i images of the intersection curve in domains
M ′

i

M̃ domain for the result formed by mergingM ′
i

M̃i subdomains of M̃ parametrized overMi

p̃i : M̃i →Mi parameterizations of M̃i

c̃(t) : I → M̃ image of the intersection curve in M̃
pj

v control point at a vertex v of a parameter do-
main at refinement level j

f
1

M
1

~
M

2

~

M
~

M
1
’ M

2
’

c
2
’(t)c

1
’(t)

c
1
(t)

c
2
(t)

c(t)

 c(t)~

M
1 M

2

f
2

p
1 p

2

Figure 4: Maps used in the algorithm.

2 Multiresolution Subdivision Surfaces

Before describing the algorithm in greater detail, we briefly review
subdivision surfaces with a special focus on parameterization. Sub-
division surfaces are defined by an initial control mesh. We use
a variant of Loop’s subdivision scheme for triangular meshes with
rules for corners and creases [4].

Multiresolution surfaces extend subdivision surfaces by intro-
ducing details at each level. Each time a finer mesh is computed, it
is obtained by adding detail offsets to the subdivided coarser mesh.
The process of reconstructing a surface from the coarse mesh and
details is called synthesis. Formally, let S be the subdivision oper-
ator (a matrix mapping control points on a coarser level to a finer
level) let pl be the vector of control points on level l. Given the de-
tail coefficients dl+1 for the next subdivision level, the rule for com-
puting the control points on the finer level is pl+1 = Spl + dl+1.

The inverse process of converting the data specified on a fine
resolution level to the sequence of detail sets and the coarsest level
mesh is called analysis. For analysis, we need a way of obtaining
the coarse mesh from the fine mesh. This can be done in a number

analysis synthesis

smooth

subdivide

coarse level

subdivide

+

4

fine level

details

Figure 5: Synthesis and analysis diagrams for multiresolution sur-
faces.

of ways: simple Laplacian smoothing or Taubin’s smoothing[34],
quasi-interpolation [23] or least-squares fitting. The synthesis and
analysis diagrams are shown in Figure 5. Figure 6 shows smooth
surfaces corresponding to different levels of resolution.

Figure 6: Multiresolution surface. Upper row: coarse-to-fine hier-
archy of control meshes. Lower row: corresponding surfaces.

For the purposes of this work, a specific choice of analysis
method is irrelevant; it is important to note that given a multires-
olution mesh represented as the coarsest mesh and details on finer
levels one can reconstruct the surface uniquely, without knowing
what analysis method was used. In the areas on the surface result-
ing from a boolean operation where the details need to be recom-
puted we use fitting and quasi-interpolation to obtain the details, as
described in Section 5.
Parameterization over the initial control mesh. Suppose the ini-
tial control mesh is a simple polyhedron, i.e., it does not have self-
intersections. (We do not need this assumption, but it simplifies the
presentation.) Suppose each time we apply the subdivision rules to
compute the finer control mesh, we also apply midpoint subdivision
to a copy of the initial control polyhedron.

Note that each control point that we insert in the mesh using sub-
division corresponds to a point in the midpoint-subdivided polyhe-
dron. Another important fact is that midpoint subdivision does not
alter the control polyhedron regarded as a set of points; and no new
vertices inserted by midpoint subdivision can possibly coincide.

Figure 7: Dyadic parameterization: the surface is parameterized
over the coarsest level control mesh.

As we repeatedly subdivide, we get a mapping from a denser
and denser subset of the control polygon to the control points of a
finer and finer control mesh. In the limit, we get a map from the
control polygon to the surface (Figure 7). This parameterization

permits direct evaluation at arbitrary parameter position following
the approach of [32], which trivially generalizes to multiresolution
setting.

We use the term parametric domain of a surface for the top-level
control mesh when we discuss parameterizations. The triangles of
the top-level control mesh are referred to as parametric triangles.
Parametric position of a point is defined by an index of the triangle
in which it is located, together with barycentric coordinates in the
triangle.

We reserve the term vertices for the vertices of triangles in the
parametric domain; the vertices of the three-dimensional control
meshes are referred to as control points. Multiple control points
(one for each level l ≥ i) correspond to the vertices on levels finer
than i.
Linear vertex charts. Quite often, we need to move points con-
tinuously in the parametric domain of a subdivision surface. In this
case, it is convenient to use local charts, i.e. maps of parts of the
parametric domain (the control mesh) to the plane. We use one of
the simplest types of charts, piecewise linear charts. A piecewise
linear chart maps one ring of triangles N1(v) around a vertex v of
valence k of the control mesh to a regular k-gon Πk in the plane.
Let g : N1(v) → Πk be the map from the neighborhood of a ver-
tex to the chart. We can move a point p in one of the triangles in
N1(v) anywhere within the neighborhood: we map it to the plane
using the map g, apply a transformation T in the plane, and map it
back to get the new position p′: p′ = g−1 ◦ T ◦ g(p). The point p′

can end up in any triangle of N1(v). We use this simple procedure
to move points in the parametric domains in two cases: intersec-
tion curve snapping (Section 4) and parameterization optimization
(Section 5).

3 Intersection Curve

For simplicity, we assume in the exposition that the objects intersect
along a single curve; in the case of multiple intersection curves, all
considerations apply to each curve individually.

The goal of the first step of our algorithm is to find a piecewise-
linear approximation to the intersection curve c : I → R3, where
I is an interval, along with its images in the domainsM1 andM2,
ci : I →Mi, i = 1, 2.

The problem of intersecting two surfaces has received a lot of
attention (e.g. [3], [16], [29], [18]). The main difficulty is that
the topology of the intersection is unknown in general and may be
unstable with respect to small perturbations of the surfaces.

However, we observe that the cases where the problem is ill-
conditioned are typically of least interest to us. It is relatively un-
likely that it is necessary to find intersections of two slightly touch-
ing objects precisely. Thus, we can weaken the requirements of our
algorithm and only require that it produces intersections with valid
topology rather than correct topology. In other words, we require
that there are small perturbations of the original surfaces such that
the intersection curve has that topology. This allows us to replace
the problem of intersecting smooth surfaces with the problem of in-
tersecting approximating meshes. Intersecting polyhedra is a sub-
stantially simpler problem, although some effort has to be invested
to obtain a fast and robust algorithm.

It should be noted that one can theoretically obtain true intersec-
tion topology in all cases excluding degenerate (e.g. single point of
contact) by using adaptive refinement following an approach simi-
lar to [17]. However, as the topology of the intersection curve can
be highly complex even for simple surfaces, many levels of refine-
ment can be required in certain areas, which is contrary to our goals
of efficiency and robustness.

The naive mesh intersection algorithm (intersect each pair of tri-
angles from two meshes; construct intersection curves as connected

sequence of triangle pair intersections) is inefficient and is not ro-
bust. We address these problems with bounding box hierarchies and
control point perturbation.
Bounding box hierarchies. To accelerate the algorithm we use
axis-aligned bounding box hierarchies for each mesh. This appears
to be the most efficient approach for our data. Using tighter bound-
ing volumes, such as nonaligned bounding boxes or higher order
volumes which are useful for collision detection (see [21]) does not
necessarily lead to major improvements in performance for com-
puting intersections. Most collision algorithms are optimized for
quick exclusion testing, but in our case we are expecting collisions.
Using axis-aligned bounding boxes allows each collision test to be
executed quickly, each one localizing the collision further.
Perturbation method for computing intersections. The polyhe-
dral intersection algorithm relies crucially on the test whether an
edge is intersected by a triangle. Usually, this test is implemented
with the above-predicate, which determines whether a point p0 is
above or below the plane of a triangle. Consider a triangle with
points p1, p2, p3 ∈ R3. A point is above the triangle if the deter-
minant det[p0, p1, p2, p3] is positive, where the points pi are repre-
sented in homogeneous form. The evaluation of this determinant is
error-prone due to rounding errors in floating point arithmetic.

One can find a tight bound for the error [31], and if it leads to an
undetermined result, resort to exact or arbitrary precision arithmetic
[5, 31].

We use a simpler approach based on the perturbation scheme of
[30]. In the case of a determinant sign uncertainty, we abort the in-
tersection computation, perturb the input points by a small amount
(depending on the triangle size) and perform the test again for all
triangles affected by the perturbation. This is consistent with our
goal of finding a consistent approximate intersection reliably and
efficiently. Nevertheless, we note the concern about perturbation
schemes in geometric modeling: parallel edges and other degenera-
cies are often intentional design decisions [7, 6, 33, 30].

Specifically we replace each point pi with a linear function
pi(ε) = pi + εri, where ri is a random direction. To determine
the sign for the original data, we use

lim
ε→0+

sign det[pi(ε), pj(ε), pk(ε), pl(ε)].

We can easily determine the sign of the expression: the deter-
minant is a cubic polynomial in ε, and the sign is determined by
coefficient of the linear term, if its sign can be computed reliably.
If it can not, we choose a different perturbation, and recompute af-
fected points. A more satisfying way of dealing with the problem
is to use accurate calculations on the determinant.

Figure 8 shows some examples of intersections where degenerate
cases are resolved with perturbation.

(a) (b) (c)

Figure 8: Degeneracies resolved by perturbation. (a) Two cubes
with incident edges and vertices. (b) Intersection curves. (c) In-
tersection of two identical icosahedra. The polyhedra are rendered
with perturbation to illustrate the topologically valid intersection.

4 Cutting and Merging Parametric Domains

Once the intersection topology is determined, we proceed to cut the
parametric domains of the original solids and combine them into a

single parametric domain for the resulting object. At this stage we
do not determine the positions of the control points for the new ob-
ject; nor do we establish a final correspondence between the points
of the new parametric domain and the original domain. We do as-
sign initial values for this parameterization to provide initialization
for optimization later. We used three main considerations when
choosing the algorithm for cutting the domains:

• the topology of the cut should be the same as the topology of the
intersection curve;
• as few as possible vertices should be added to the mesh represent-
ing the domain;
• the valence of the inserted vertices should be kept small.

The last two requirements often conflict with each other. For ex-
ample, it might be necessary to split a single edge of the original
domain into many pieces to capture the topology of the intersec-
tion curve. If we do not insert any additional vertices and simply
connect all the points on the edge to the opposite vertex, this will
considerably increase its valence. We prevent such situations by
inserting vertices using only quadrisection of a triangle. This oper-
ation has to be followed by bisections of adjacent triangles to keep
the mesh of the domain conforming; as a result, the valence of ver-
tices may still increase, but much more slowly.

It should be noted that our algorithm intentionally ignores the
geometry of the intersection curve and of the original surfaces to
the extent it is possible without violating the first requirement.

There are two steps in constructing the domain for the result of
a boolean operation: cutting each of the original domains M1 and
M2 using the intersection curve, and merging relevant parts into a
single domain. At the first stage, several pieces are produced for
each of the initial meshes; depending on the operation, one or the
other piece has to be discarded. We assume that the normals of the
surfaces bounding the solids are oriented outwards, which allows
us to identify the part of the mesh to be discarded locally.

More formally, the output of this algorithm is a new parametric
domain M̃ , separated into two parts M̃1 and M̃2, such that M̃1 ∩
M̃2 is a single chain of crease edges forming a piecewise-linear
curve c̃(t) along with maps pi, i = 1, 2 from vertices of M̃i to
Mi. Note that on the curve c̃(t) both maps pi are defined. The
additional property that we require is that pi(c̃) is in the image of
the intersection curve ci in the parametric domainMi, i = 1, 2, and
for every point α on the curve c̃ pi(α) = ci(t), i = 1, 2, for some t.
The last condition ensures that the common curve c̃ of subdomains
M1 andM2 is mapped one-to-one to the spatial intersection curve
c(t).

4.1 Cutting

The result of cutting is a set of two domains M ′
1 and M ′

2 that are
combined into the resulting domain M̃ in the next stage. Simulta-
neously, a map p′i is constructed for each of the domains that maps it
to the original domainMi, and the image of the boundary p′i(∂M

′
i)

is contained in the image of the intersection curve ci(t).
Each of the domains is constructed gradually by refining a copy

of one of the original domains Mi. Initially, M ′
i is just a copy of

Mi, and p′i maps vertices of M ′
i to the corresponding vertices of

Mi. For the intersection curve we also maintain two temporary
images c′i(t) which define the position of the intersection curve in
the new domains. Again, these images are initialized to copies of
ci(t).

The cutting algorithm has two alternating steps: refinement and
snapping (Figure 9). The goal of snapping is to identify points of
the intersection curve c′i(t) with nearby vertices of the parametric
domain. Snapping is optional, but important for obtaining domains

(a) (b) (c) (d)

Figure 9: Refinement and snapping. (a) and (b) Refinement steps.
(c) Curve in one of the domains M̃i, i=1,2. (d) Snapping the curve
to vertices.

of low complexity. The goal of refinement is to reduce the size of
triangles to simplify the shape of the intersection of the curve c′i(t).
Refinement. A triangle containing a part of the intersection curve
(a curve triangle) is refined if the curve intersects the triangle
boundary more than twice, does not intersect it at all, or intersects it
twice but on the same side. We call such a triangle bad. When a tri-
angle is refined, the maps p′i are assigned values in the domainMi

for new vertices using midpoint subdivision of barycentric coordi-
nates in the corresponding triangle ofMi. On each refinement step
the positions of the images of the intersection curve c′i in the new
domain M ′

i are recomputed by converting the barycentric coordi-
nates in the parent triangle to the coordinates in the new triangles.

Figure 10: Left: Before snapping, all parameter values for curve
vertices are mapped to chart; Right: After snapping, all chart co-
ordinates are mapped back to triangles and barycentric coordinates
for a new parameterization of the center vertex.

Snapping. We snap the curve c′i to a vertex of M ′
i if there is a

point α on the curve for which one of the barycentric coordinates
is larger than a snapping constant in the range 0 to 1. For most of
the organic surfaces we used a snapping constant of 0.8, snapping
to the curve if one of its sample’s barycentric coordinates was 0.8
or greater. For the more mechanical shapes we effectively turned
off snapping by setting this constant to 1.0, creating a closer match
to the curve at the cost of a finer triangulation.

Snapping moves the curve to the vertex in two steps (Figure 10).
First, we move the image of the vertex in the vertex chart gv(v) to
the image of the curve gv(c′i(t)); a piecewise linear map r maps
the k-gon Πk to itself, with the point gv(v) mapped to a point g(α)
on the curve. Then we apply the inverse transformation r−1 to
each point of the curve to move it inside Πk. Finally, we apply
the inverse of the parametric map gv to obtain new positions of the
curve points in the parametric domainMi. As a result, the point α
of the curve c′i is mapped to v, and the curve is continuously shifted
in the domain. Snapping may produce new bad triangles, forcing
us to refine again. The complete cutting algorithm is given by the
following pseudo-code.

Algorithm Snap and Refine
do

foreach triangle vertex v on the curve
find closest curve point α to v
snap v to α if possible

if there are bad triangles
refine bad triangles

while there are bad triangles

Upon termination, one can easily find a sequence of edges which
is topologically equivalent to the intersection curve: one simply has
to split the triangles intersected by the curve in two (Figure 11).
The values in the intersection curve images c′i(t) are used to set the
initial parametric positions p′i(t) for the vertices on the edges along
which we cut the domainM ′

i .
Once the domain is cut, the part which is not required to con-

struct the result of the boolean operation is removed. Note that in
the resulting domainM ′

i the parametric positions inMi of all inte-
rior vertices are determined by midpoint subdivision of barycentric
coordinates. Only the positions on the boundary are shifted towards
the image of the intersection curve; this may create folds in the ini-
tial parameterization, which are removed at later stages.

Figure 11: Left: curve in the parametric domain. Right: topologi-
cally equivalent strip of edges.

The procedure we have described is used for all vertices except
for crease vertices. These vertices are constrained to snap only to
the points on c′i(t) which are also on the same crease.

4.2 Merging

Next, the domains M ′
1 and M ′

2 are joined along their boundaries
(Figure 12). The output of this stage is the domain M̃ for the result,
with the intersection curve corresponding to a sequence of crease
edges. We describe the algorithm for a single connected intersec-
tion curve to simplify the presentation, but it can be applied to mul-
tiple intersection curves without any changes.

Initially, correspondence between points of the boundaries of the
domains M1 and M2 is specified indirectly: points α1 and α2 on
the boundaries of M1 and M2 are identical, if p′i(αi) = ci(t) for
some t and i = 1, 2, i.e. they correspond to the same position on
the intersection curve. However, it is not true in general that if α1

is a vertex, corresponding α2 is a vertex.
In order to match the vertices on corresponding boundaries, we

will use similar snapping and refinement steps as before, modifying
the domains M ′

1 and M ′
2, and the parameterizations p′1 and p′2. If

one domain is lacking a boundary vertex, we can create a new one
using refinement. Boundary vertices which almost coincide can be
snapped together.

Figure 12: Domain merging. Left: Boundary vertices do not match
up. Middle and Right: Triangle split matching a vertex on the other
domain.

The algorithm has two phases and is entirely symmetric for both
domains M ′

1 and M ′
2. The first phase is an iteration where close

pairs of unmatched boundary vertices are snapped together. Sup-
pose the domain M ′

1 has a vertex v1 with p′1(v1) = c1(t1), and

the other domain M ′
2 a vertex v2 with p′2(v2) = c2(t2), and

|c(t1) − c(t2)| < ε for a choice of snapping constant ε. Then
we adjust p′(v1) and p′(v2) so that p′i(vi) = ci((t1 + t2)/2). ε
is chosen to be a fraction of the minimal spatial distance between
sequential vertices on the curve taken from the same side.

The second phase creates new vertices by refinement. Consider
a boundary edge e ofM ′

1 that corresponds to an intersection curve
segment from t0 to t1. Assume that this segment contains a bound-
ary vertex of the other domain at curve parameter t for t0 < t < t1.
In this case we split edge e to get a new vertex v and assign a para-
metric value p′(v1) to be c1(t). We repeat the steps until all vertices
are matched.

Finally, we are in a situation when the boundaries of M ′
1 and

M ′
2 can be trivially identified, to produce the domain M̃ for the

resulting surface. The subdomains M̃1 and M̃2 are simply images
ofM ′

1 andM ′
2 in the joined domain, and parameterizations p̃i over

the original domains are given by reassigning values of p′i on M ′
i

to corresponding vertices in M̃ .
During the merging process, we also take care to mark the inter-

section as a crease, and mark as corner vertices any vertex formed
by the intersection of a crease with the intersection curve. We fur-
ther mark concave and convex sectors for subdivision rules of [4]
based on the angle of a sector on the new surface in the limit, eval-
uated on the original surfaces.

5 Parameter Optimization

The snapping and merging steps guarantee that every vertex of the
newly constructed domain M̃ can be located in one of the original
domainsM1 andM2. This allows us to evaluate the corresponding
surface positions for any point α in M̃ as fi(pi(α)) for i = 1
or 2. However, the maps pi are not one-to-one and can introduce
substantial distortion into the surface shape.

As the next step of our algorithm, we optimize the parameteriza-
tions p̃i of M̃i. No new maps or domains are created. This step has
two goals:

• ensure that the parameterization is one-to-one;

• and that images of the triangles M̃ have aspect ratios not too far
from one.

We used two methods to optimize the parameterization, widely
used Laplacian smoothing (e.g. [9]) and area-to-perimeter ratio
maximization [2], combined with the optimization technique of
[10].

The advantage of Laplacian smoothing is that it is relatively easy
to evaluate and accelerate. However, it is known to produce results
with flipped or extremely thin triangles, especially near boundaries
with concave corners. Such boundaries are common in the meshes
produced by taking differences of free-form solids. The second,
slower, method is used to improve the parameterization and elimi-
nate flipped triangles.
Optimization functionals. We define the distortion measures that
we minimize for a vertex of a planar mesh, and then explain how
we compute these quantities for a vertex of a parametric domain
mapped into another parametric domain.

Laplacian smoothing minimizes the difference between the po-
sition of a vertex q(v) and the barycenter of surrounding vertices:

ELaplace(v) =
∑

w∈N1(v)

‖q(v) − q(w)‖2

To obtain the functional to minimize we simply sum ELaplace(v)

over all vertices.

The second distortion measure that we use is equivalent to area-
to-perimeter ratio, which favors equilateral triangles [2]. Instead of
computing the perimeter, we use the sum of squares of edges, to
make it a smooth function of point positions.

Eap(v) =

− min
[u,v,w]

Area([q(u), q(v), q(w)])

‖q(u) − q(v)‖2 + ‖q(u) − q(w)‖2 + ‖q(v) − q(w)‖2

where [a, b, c] denotes a triangle with vertices a, b, c and [u, v, w]
ranges over the triangles ofN1(v). It is easy to show that the mini-
mal value of the functional is attained for an equilateral triangle. In
this case, to obtain the functional we take the maximal value over
all vertices, which amounts to taking the maximal value over all
triangles. The two distortion measures are compared in Figure 13.

Figure 13: Left: Parameter optimization in a single chart. The
boundary of the parameterization has concavities. Upper right:
Laplacian smoothing produces a fold on the boundary (red). Lower
right: Area-to-perimeter ratio optimization punishes for flipped tri-
angles and produces a one-to-one parameterization.

p~i(v)
p~i(u)

p~i(w)

α

Figure 14: Area-to-perimeter ratio optimization. Left: initial ring;
the triangle with worst aspect ratio is highlighted. Middle: position
p̃i(v) of vertex v is moved along the dotted line segment towards
optimal position α. Right: the optimal position is marked with star.
For this position distortion of two highlighted triangles is the same.

Computing the distortion measures in a parametric domain.
The simplest approach to compute one of the distortion measures
for a vertex v of the domain M̃ is to map the positions p̃i(w) of
the vertices w of M̃ adjacent to v to the plane, and evaluate the
functional here. As long as the distortion introduced by the map
is small, we can safely use the distortion measure computed in this
way for optimization. Linear charts described in Section 2 can be
used to map points to the plane if we assume that all points p̃i(w)
involved in computing a single term in the functional are contained
in a single triangle ring of one of the original domainsMi. In other
words, the following condition holds:
Single-ring condition. The parametric image p̃i(N1(v)) of a ring
of triangles centered at a vertex v of M̃i ⊂ M̃ is contained in a
ring of triangles N1(w) for some vertex w.

However, after the initial step (cutting and merging of the origi-
nal domains) one cannot guarantee that images of all triangles of M̃

are contained in a single ring of triangles in one of the domainsMi.
Snapping may spread a few triangles between rings (Figure 15).
We use adaptive subdivision of positions p̃i of vertices of M̃ in
the parametric domain to refine the mesh M̃ until the condition is
satisfied.
Subdivision in parametric domain. As the vertices of a triangle
of M̃i may map to different triangles of Mi it is not immediately
clear how to subdivide parametric values at these vertices. We use
the following approach:

Suppose v1 and v2 are two vertices in M̃i such that p̃i(v1)
and p̃i(v2) are in different nonadjacent triangles ofMi. Dijkstra’s
shortest path algorithm is used to find the chain of triangles between
v1 and v2. The vertex w in M̃i inserted on the edge connecting v1
v2 is assigned position p̃i(w) which is the center of the middle tri-
angle on the path, if there is one. We apply subdivision until all
vertices in M̃ satisfy the single-ring condition.

Figure 15: Left: Each one-ring is contained within a single chart
from original mesh. Right: The dark one-ring is no longer con-
tained in any chart.

Optimization procedures. A single step of Laplacian smoothing
consists of moving the position p̃i(v) of a vertex v of M̃i to the
average of the positions of surrounding vertices. This can be done
using the linear charts as described above; we move the position
of each vertex as far as possible towards the barycenter without
violating the single-ring condition for any of the rings depending
on it.

For the area-to-perimeter ratio, the distortion is minimized by
the following procedure (Figure 14). We pick the triangle [v, w, u]
in the ring N1(v) with maximal distortion and move the position
p̃i(v) of the vertex v along the segment connecting the old position
with a point α, such that the triangle [α, p̃i(w), p̃i(u)] is equilateral.
We do a search on the segment for the position that would minimize
the area-to-perimeter distortion for the triangle, while keeping dis-
tortion of all other triangles lower, and respecting the single-ring
condition for surrounding triangles (Figure 13).

6 Fitting

The previous stages of the algorithm yield the domain M̃ for the
resulting surface and parameterizations p̃i of all vertices in sub-
domains M̃i i = 1, 2 over the domains of the original surfaces.
Furthermore, these parameterizations have the single-ring property.
This allows us to compute the positions inMi not only for top-level
vertices of M̃ , but also for any vertex added to M̃ by subdivision.
For this we only need to be able to assign parametric coordinates to
the new vertices, which we do using linear charts as in Section 5.

However, no geometry is computed for the resulting surface. We
fix the parameterizations and regard the new surface and parts of
the old surfaces as functions on the newly constructed domain (Fig-
ure 16). Our goal is to compute the positions of control points for
an approximation to the result, avoiding introducing details on fine
levels. This is achieved by fitting surfaces defined by the control
points to the original surfaces. The fitting procedure can be per-
formed adaptively, increasing resolution where necessary. We con-
sider the simplest version: we fit a subdivision surface with the

control mesh obtained by subdividing M̃ m times, to the original
surface. We perform the fit in a hierarchical top-down manner, to
obtain a multiresolution representation in the process.

M1
M2

M
~

M1

~
M2

~
f1 f2

p1 p2

f
~

Figure 16: Surface fitting: We minimize the difference between the
new and original surfaces.

Observe that we can evaluate the old surface fi at any vertex at
any subdivision level of the result domain M̃ using the composition
fi ◦ p̃i. We use a generalization of Stam’s technique [32] to piece-
wise smooth subdivision surfaces to evaluate fi at arbitrary points
of the domainsMi, i = 1, 2.

Let Vm be the set of vertices of the M̃ afterm subdivision steps.
Then the difference between two surfaces can be measured by the
following functional:

∑
i=1,2

∫
Mi

‖fi(p̃i(α)) −
∑

v∈Vm

pm
v B

m
v (α)‖2dα

where pv are the control points for the resulting surface on sub-
division level m and Bm

v (α) are the basis functions at vertices of
level m. This functional is quadratic in pm

v . The integrals can be
computed explicitly, but we found that the results are not substan-
tially different from replacing the continuous integrals with differ-
ences of control points n levels below the level being fitted (we use
n = 3). As a result, (6) is replaced with a different functional:

∑
i=1,2

∑
v∈V m+n

‖fi(p̃i(v)) −
∑

v∈Vm+n

[Snpm]v‖2

where [Snpm]v is the control point at vertex v obtained as a result
of subdividing control mesh pm n times. In vector notation, the
expression above can be written as

∑
i=1,2

∑
v∈V m+n ‖qn+m −

Snpm‖2, with qv = fi(p̃i(v)).

It is possible to show that the relative difference between the
continuous and discrete functionals is bounded and derive accurate
bounds using estimates on the magnitude of subdivision basis func-
tions. The discrete form is a standard least-squares fit problem,
which can be solved by a number of efficient methods (e.g. conju-
gate gradient). However, we have found that visually better results
are obtained by imposing additional constraints on movement of
the control points: on level m we allow the points to move only
in normal direction to the surface constructed by the fit on level
m − 1. In this way, we obtain a mesh similar to the normal mesh
of [12]. While the accuracy of the fit in the mean square sense de-
creases, the visual surface quality improves, as this approach pre-
vents forming folds and ripples. At this time, we have no formal
justification for imposing such constraints. It should be noted that
the area that needs to be fitted grows when fitting finer levels of the
multi-resolution mesh. This area grows by the size of the subdivi-
sion mask on the previous level, but this is not a large concern since

it only adds a layer of vertices around the perimeter while the num-
ber of vertices internal to the optimized area grows exponentially at
each subdivision level.

If high-accuracy approximation of the result is desired, once a
good approximation is achieved by the fit, we switch to quasi-
interpolation to compute further details on the surface ([23]). This
is done solely for efficiency.

A careful examination of (6) reveals that it is possible to optimize
not only the positions of the control points pm, but also the param-
eterizations p̃ to obtain a better approximation; our optimization of
the parametric maps described in Section 5 tends to work in this
direction. However, we make no attempt to optimize (6) directly;
this is a possible direction for future research.

7 Results

We have tested our algorithm on various closed multiresolution sur-
faces. Figure 2 shows all the operations possible with two objects
A and B. Figure 22 shows the coarsest level triangulation. Note
the low valence of the new vertices near the curve. Figure 1 also
used all three boolean operations in its construction. The remaining
figures show useful operations possible with boolean operations on
free-form solids.

Figure 17: Subtracting a cylinder from the mannequin head.

8 Conclusion and Future Work

While our work addresses a classical problem in geometric mod-
eling, our emphasis is quite different from most of the work we
are familiar with. The algorithms that we have developed primar-
ily address the problem of constructing a valid and usable model
for the result of the boolean operation, rather than computing pre-
cisely all geometric objects characterizing the result (i.e. the inter-
section curve and parametric images of the intersection curve in
the domains of the objects). Thus our algorithms can be viewed
as complimentary to work on surface-surface intersections. Any
accurate algorithm can be used to compute the intersection curve
instead of our approximate algorithm. As future work, we plan
to explore integration of precise surface-surface intersection algo-
rithms into our framework. The algorithms described in Section 5
typically improve parameterizations. However, even defining rig-
orously measures of quality of the parameterization of one surface
over another requires additional research. In Euclidean domains
efficient techniques such as multigrid dramatically accelerate con-
vergence of linear methods such as Laplacian smoothing. It is un-
clear how to apply similar techniques to functions with values in
parametric domains.

Boolean operations on meshes with significantly different com-
plexity can result in high valence vertices on the resulting mesh.

Figure 19: Modeling with multiresolution surfaces. The earring is assembled from a sphere and a torus. The ear is pierced with an enlarged
version of the torus. The ear and the pierced ear are represented as multiresolution surfaces.

Figure 20: Unions and differences of piecewise-smooth surfaces. The resulting surfaces have creases and corners.

Figure 21: Sequence of difference operations: Subtracting two boxes and a cylinder from a sphere. The result has convex and concave
corners. The subdivision scheme that we use [4] represents these features explicitely.

Figure 22: Difference of objects of different scale. Left: input surfaces. The patches of the box are much larger than the ones of the sphere.
Middle: control mesh for the difference. The patch size changes gradually. Right: resulting surface.

Figure 18: Union of the head and the body. Left: Original solids.
Right: New solid obtained by union.

Any algorithm that significantly increases the number of regular
vertices would result in a better surface.

It appears that we are able to approximate the results of boolean
operations arbitrarily well, assuming that the topology of the inter-
section curve was resolved correctly. However, there is no guaran-
tee that this is the case, and our algorithms require further analysis.

Our current implementation is not optimized for speed; the
time required for operations is typically short: from real time to
about five seconds for objects with larger control meshes such as
the head/cylinder difference. We believe that for simple objects,
boolean operations can be performed instantaneously.

References

[1] A. Agrawal and A. Requicha. A paradigm for the robust design of algorithms
for geometric modeling”. Computer Graphics Forum, 13(3):33–44, 1994.

[2] R. E. Bank. PLTMG: A Software Package for Solving Elliptic Partial Differential
Equations – Users’ Guide 7.0, volume 15 of Frontiers in Applied Mathematics.
SIAM Books, Philadelphia, 1994.

[3] R. E. Barnhill, G. Farin, M. Jordan, and B. R. Piper. Surface/surface intersection.
Computer Aided Geometric Design, 4(1-2):3–16, July 1987.

[4] Henning Biermann, Adi Levin, and Denis Zorin. Piecewise smooth subdivision
surfaces with normal control. Proceedings of SIGGRAPH 2000, July 2000.

[5] C. Burnikel, S. Funke, and M. Seel. Exact arithmetic using cascaded computa-
tion. ACM Symposium on Computational Geometry, (14):175–193, 1998.

[6] Christoph Burnikel, Kurt Mehlhorn, and Stefan Schirra. On degeneracy in geo-
metric computations. In Proceedings of the Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms (Arlington, VA, 1994), pages 16–23, New York, 1994.
ACM.

[7] Katrin Dobrindt, Kurt Mehlhorn, and Mariette Yvinec. A complete and effi-
cient algorithm for the intersection of a general and a convex polyhedron. In
Algorithms and data structures (Montreal, PQ, 1993), pages 314–324. Springer,
Berlin, 1993.

[8] D. Epstein, N. Gharachorloo, F. Jansen, J. Rossignac, , and C. Zoulos. Multiple
depth-buffer rendering of csg. Technical report, IBM Research Report, 1989.

[9] D. A. Field. Laplacian smoothing and delaunay triangulations. Comm. Applica-
tions: Numerical Methods, (4):709–712, 1988.

[10] Lori Freitag, Mark Jones, and Paul Plassmann. A parallel algorithm for mesh
smoothing. SIAM J. Sci. Comput., 20(6):2023–2040 (electronic), 1999.

[11] Jack Goldfeather, Jeff P. M. Hultquist, and Henry Fuchs. Fast constructive-
solid geometry display in the pixel-powers graphics system. Computer Graphics
(Proceedings of SIGGRAPH 86), 20(4):107–116, August 1986. Held in Dallas,
Texas.

[12] Igor Guskov, Kiril Vidimc̆e, Wim Sweldens, and Peter Schröder. Normal meshes.
Proceedings of SIGGRAPH 2000, pages 95–102, July 2000.

[13] Mark Halstead, Michael Kass, and Tony DeRose. Efficient, fair interpolation
using Catmull-Clark surfaces. In Computer Graphics Proceedings, Annual Con-
ference Series, pages 35–44. ACM Siggraph, 1993.

[14] Christoph M. Hoffmann. Geometric and solid modeling: a introduction. San
Mateo, California: Morgan Kaufmann, 1989.

[15] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Huber Jin, John
McDonald, Jean Schweitzer, and Werner Stuetzle. Piecewise smooth surface
reconsruction. In Computer Graphics Proceedings, Annual Conference Series,
pages 295–302. ACM Siggraph, 1994.

[16] Josef Hoschek and Dieter Lasser. Fundamentals of computer aided geometric
design. A K Peters Ltd., Wellesley, MA, 1993. Translated from the 1992 German
edition by Larry L. Schumaker.

[17] Leif P. Kobbelt, Katja Daubert, and Hans-Peter Seidel. Ray tracing of subdivision
surfaces. Eurographics Rendering Workshop 1998, pages 69–80, June 1998.
Held in Vienna, Austria.

[18] Shankar Krishnan and Dinesh Manocha. An efficient surface intersection algo-
rithm based on lower-dimensional formulation. ACM Transactions on Graphics,
16(1):74–106, January 1997. ISSN 0730-0301.

[19] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David
Dobkin. Maps: Multiresolution adaptive parameterization of surfaces. Proceed-
ings of SIGGRAPH 98, pages 95–104, July 1998.

[20] A. Levin. Combined subdivision schemes for the design of surfaces satisfying
boundary conditions. Computer Aided Geometric Design, 16(5):345–354, 1999.

[21] Ming Lin and Stefan Gottschalk. Collision detection between geometric models:
A survey. Proceedings of IMA Conference on Mathematics of Surfaces, 1998.

[22] Lars Linsen. Schneiden und vereinen von kontrollnetzen (intersection and merg-
ing of control meshes.). Master’s thesis, Universität Karlsruhe, 1997. in German.

[23] Nathan Litke, Adi Levin, and Peter Schröder. Trimming for subdivision surfaces.
Technical report, Caltech, 2000.

[24] Michael Lounsbery, Tony DeRose, and Joe Warren. Multiresolution analysis for
surfaces of arbitrary topological type. Transactions on Graphics, 16(1):34–73,
January 1997.

[25] Lee Markosian, Jonathan M. Cohen, Thomas Crulli, and John F. Hughes. Skin: A
constructive approach to modeling free-form shapes. Proceedings of SIGGRAPH
99, pages 393–400, August 1999. Held in Los Angeles, California.

[26] K. Pulli and M. Lounsbery. Hierarchical editing and rendering of subdivision
surfaces. Technical Report UW-CSE-97-04-07, Dept. of CS&E, University of
Washington, Seattle, WA, 1997.

[27] Ari Rappoport and Steven Spitz. Interactive boolean operations for conceptual
design of 3-d solids. Proceedings of SIGGRAPH 97, pages 269–278, August
1997. Held in Los Angeles, California.

[28] J. Rossignac and A. Requicha. Solid modeling. In J. Webster, editor, Encyclope-
dia of Electrical and Electronics Engineering. John Wiley and Sons, 1999.

[29] T. Sederberg and T. Nishita. Geometric hermite approximation of surface patch
intersection curves. Computer Aided Geometric Design, 8(2):97–114, 1991.

[30] R. Seidel. The nature and meaning of perturbations in geometric computing.
Discrete Comput. Geom., 19(1):1–17, 1998.

[31] Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and
fast robust geometric predicates. Technical report, Carnegie Mellon University,
1996.

[32] Jos Stam. Exact evaluation of catmull-clark subdivision surfaces at arbitrary
parameter values. Proceedings of SIGGRAPH 98, pages 395–404, July 1998.
Held in Orlando, Florida.

[33] A. James Stewart. Local robustness and its application to polyhedral intersection.
Internat. J. Comput. Geom. Appl., 4(1):87–118, 1994.

[34] Gabriel Taubin. A signal processing approach to fair surface design. In Robert
Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual Conference Se-
ries, pages 351–358. ACM SIGGRAPH, Addison Wesley, August 1995.

[35] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multiresolution
mesh editing. Proceedings of SIGGRAPH 97, pages 259–268, August 1997.

